Подпиточный насос системы отопления: конструктивные особенности

 

Содержание

Подпиточный насос системы отопления: конструктивные особенности

Подпиточный насос системы отопления: конструктивные особенности

Чаще всего жилые частные дома отапливаются водяной системой отопления, в которой нагретая жидкость (может использоваться не только вода, но и специальные антифризы — незамерзающие жидкости) движется по трубам и передает тепло радиаторам отопления.

Системы отопления можно разделить на два типа:

  • с естественной циркуляцией жидкости по системе,
  • с принудительным движением теплоносителя.

В случае с принудительной циркуляцией теплоноситель движется благодаря циркуляционному насосу.

Принцип работы теплоносителя

На практике все без исключения владельцы автономных систем отопления рано или поздно вынуждены решать проблему уменьшения объема теплоносителя в системе отопления и применять подпиточные насосы.

Оборудование котельной с подпиточным узлом

Различие лишь в том, что в открытых системах теплоноситель уменьшается систематически и довольно быстро, а в закрытых — медленней.

При циркуляции по системе отопления теплоноситель нагревается теплогенератором, проходит через радиаторы и отдает часть своего тепла для обогрева помещений. Затем уже остывший теплоноситель возвращается в котел и снова нагревается, чтобы отправиться к радиаторам отопления. Этот цикл повторяется снова и снова, пока работает система отопления.

Если объем жидкости существенно уменьшится в объеме, то, помимо снижения КПД, может выйти из строя отопительное оборудование, а система «завоздушится». Для того чтобы избежать такой неприятности, и используют подпиточные насосы для котельной, встраивая их в специальные автоматические подпиточные узлы.

Причины уменьшения объема теплоносителя

В случае с открытой системой отопления теплоноситель постоянно испаряется из расширительного бака, поскольку жидкость горячая, а бак открытый. Кроме того, испарение происходит и в воздухоотводчике, в предохранительном клапане, при повышении давления, в местах соединения оборудования (образуются микропротечки). Внутренние поверхности металлических труб подвергаются постоянной коррозии, что уменьшает их толщину, и, как следствие, в системе становится больше незаполненного жидкостью пространства.

Во время удаления воздуха из системы через краны Маевского также происходит утечка теплоносителя. Помимо этого, во время проведения очередных профилактических работ часть жидкости сливается, когда чистят грязевые фильтры, ремонтируют трубы или производят замену вышедшего из строя оборудования.

Ручная подпитка системы отопления

Если в доме организована автономная система отопления и нет общего водопровода либо воду часто отключают, выйти из положения можно, используя ручной насос, через который производится подпитка системы, а брать жидкость, например, из любой подручной емкости, бутыли и банки.

Совет: можно использовать в качестве подпиточного насоса классический насос для опрессовки, чтобы подпитывать систему отопления.

Подпитка подключается перед циркуляционным насосом к «обратке» системы отопления. Это необходимо потому, что в этой точке наименьшая температура теплоносителя и давление минимально.

установка насоса на обратной трубе

Ручная подпитка имеет свои недостатки:

  • высокие и постоянные трудозатраты;
  • приходится постоянно следить за отметками на манометре или в расширительном баке.

Данная проблема легко решается путем установки подпиточного насоса в систему отопления.

Для управления насосом требуется:

  • обратный клапан;
  • реле давления или электроконтактный манометр;
  • накопительная емкость (если нет центрального водопровода, в случае использования в качестве теплоносителя воды) или если в систему залит не концентрированный антифриз (когда используется его концентрат, просто добавляют воду)

Принцип действия автоматического узла подпитки

После обнаружения падения давления в системе регулируемый датчик давления срабатывает, и замыкаются контакты насоса. Теплоноситель доливается либо из водопровода, либо из накопительной емкости. После достижения необходимого давления теплоносителя в системе насос выключается.

Насос для системы отопления

Такое устройство имеет и еще один неоспоримый плюс — с помощью подпиточного насоса можно закачивать в систему теплоноситель, не прибегая к разбору системы отопления. Это бывает необходимо для ремонта или замены теплоносителя.

Как подобрать

У подпиточного насоса системы отопления иная задача, нежели у циркуляционного насоса, который обеспечивает движение теплоносителя по контуру отопления. Насос подпитки должен при небольшой подаче обеспечивать большее давление. Подходят лопастные, вихревые и моноблочные насосы.

Носос для подпиточного узла

Подпиточное оборудование обычно имеет небольшой КПД (всего около 45%). Но в данном случае это не имеет существенного значения. Подпиточный насос для отопления включается лишь периодически и работает непродолжительно.

При покупке насоса для подпитки следует обратить внимание:

  • На напор, который необходим. Он должен быть обязательно выше, чем давление в «обратке» системы отопления, и, кроме того, ему потребуется преодолеть сопротивление трубопровода и датчика давления.
  • На расход. Для закрытых систем отопления считается нормой утечка примерно 1/2 процента от общего объема теплоносителя в контуре котла и системе отопления.

Объем теплоносителя определяется либо опытным путем, либо из расчета около 15 литров/кВт котельной мощности.

Формула расчета насоса для системы отопления

При эксплуатации отопительных систем с естественной циркуляцией теплоносителя владельцы квартир и частных домов часто сталкиваются с проблемой недостаточного прогрева радиаторов, установленных в отдаленных комнатах.

Все зависит от протяженности отопительного контура. Если его длина составляет более 30 метров, уровень давления воды становится недостаточным для сохранения необходимой температуры в его максимально удаленных точках.

Чтобы добиться стабильной работы оборудования, используются устройства, обеспечивающие ритмичную циркуляцию теплоносителя. Предварительный расчет насоса для системы отопления дает возможность определить параметры, необходимые для выбора наиболее оптимальной модели.

Расчет насоса отопления: подачи и напора воды, мощность, кавитация

Для чего необходимы расчеты

Большинство современных систем автономного обогрева, использующихся для поддержания определенной температуры в жилых помещениях, укомплектованы насосами центробежного типа, которые обеспечивают бесперебойную циркуляцию жидкости в отопительном контуре.

За счет увеличения давления в системе можно снизить температуру воды на выходе отопительного котла, сократив тем самым суточный расход потребляемого им газа.

Правильный выбор модели циркуляционного насоса, позволяет на порядок повысить уровень эффективности работы оборудования в отопительный сезон и обеспечить комфортную температуру в помещениях любой площади.

Подбор циркуляционного насоса для системы отопления

Что нужно знать, чтобы рассчитать мощность

Чтобы понять сам алгоритм расчета циркулярного насоса, необходимо оттолкнуться от какого-либо параметра, в точности которого сомневаться не приходится. Для этого нужно открыть технический паспорт помещения, в котором планируется установка автономной отопительной системы, и узнать его площадь. Например, возьмем отдельно стоящее здание (частный дом) площадью 300 м².

Следующим шагом будет определение величин, необходимых для расчета.

Нужно узнать три основных параметра:

  • Qn — мощность источника тепла (кВт);
  • Qpu — производительность циркуляционного насоса, показатель объемной подачи теплоносителя для выбранного нами типа помещения (м³/час);
  • Hpu — мощность напора, необходимого для преодоления гидравлического сопротивления системы (м).
Читать статью  Функционирование воздушных клапанов в отопительной системе

Установка насоса в систему отопления: правильный подбор и монтаж прибора

Расчет мощности источника тепла (АОГВ)

Для каждого помещения в зависимости от его площади или объема существуют определенные технические нормы мощности источника обогрева.

Для вычисления этого параметра воспользуемся следующей формулой:

Qn = Sn × Qуд ÷ 1000

мощность источника тепла

удельная тепловая потребность помещения

Площадь отапливаемого помещения нам известна (300 м²), а второй показатель зависит от типа сооружения: если это многоквартирный дом, то его значение равно 70 Вт/м², в нашем же случае (отдельно стоящее здание), он составит 100 Вт/м².

Подставим эти значения в формулу и посмотрим, что у нас получится:

300 × 100 ÷ 1000 = 30 кВт.

Итак, мощность отопительного агрегата для нашего помещения составила 30 кВт. Существует еще один метод определения этой величины.

Объем отапливаемого помещения и мощность отопительного агрегата можно найти в следующей таблице.

Объем помещения новый дом (м³)

Напомню, что объем помещения равен произведению его площади на высоту.

  • V — объем помещения;
  • S — отапливаемая площадь;
  • h — высота комнат.

В нашем случае при высоте потолков 2,5 м, он будет составлять:

Ищем этот показатель во второй графе таблицы и получаем те же 30 кВт.

Тепловой расчет мощности и подбор системы отопления.

Расчет производительности насоса

Правильный расчет мощности насоса позволяет обеспечить систему отопления необходимым количеством теплоносителя в любой ее точке. Определив технические характеристики обогревательного котла, можно вычислить производительность циркуляционного оборудования, достаточную для нашего помещения.

Воспользуемся следующей формулой:

Qpu = Qn ÷ kτ × Δt

мощность источника тепла (АОГВ)

коэффициент теплоемкости жидкости

температурный перепад на входе и выходе системы

Если в качестве теплоносителя используется вода, ее удельная теплоемкость составляет 1,164. Если применяется иная жидкость, то значение этого параметра нужно искать в соответствующих таблицах.

При функционирующей отопительной системе значение температурного перепада (Δt ) можно вычислить методом элементарного вычитания показателей, снятых с измерительных приборов, установленных на входе и выходе системы (Δt = t1 – t2 , где t1 – температура на входе отопительного контура, а t2 – температура на выходе с него).

В противном случае придется использовать стандартные показатели. Разница температур на входе и выходе системы (Δt ) колеблется в пределах 10—20 ⁰С.

Возьмем среднее значение — 15 ⁰С и подставим полученные результаты в формулу:

Qpu = 30 ÷ 1,163 × 15 = 1,72 м³/час

Теперь один из пунктов технической характеристики циркуляционного насоса известен.

Как подобрать насос для теплого пола: расчет пола

Расчет необходимой мощности (высоты) напора

Мощность отопительного котла и производительность насоса известны, следующим шагом будет определение напора теплоносителя, достаточного для преодоления внутреннего гидравлического сопротивления труб и элементов отопительной системы.

Для этого берутся в расчет тепловые потери на самом протяженном отрезке контура — от источника тепла до дальнего радиатора. Чтобы доставить тепло в любую его точку, мощность напора подаваемой жидкости должна быть выше суммарного гидравлического сопротивления всех отопительных приборов.

Расчет напора насоса отопления производится по следующей формуле:

Hpu = R × L × ZF ÷ 10000

Мощность (высота) напора

Потери в трубах подачи и «обратки»

Протяженность отопительного контура

коэффициент гидравл. сопротивления фасонной и запорной арматуры системы

В зависимости от диаметра труб, значение параметра R находятся в диапазоне 50–150 Па/м (минимальный показатель применим для водопроводных систем с диаметром трубы от 2-х дюймов и выше, для современных пластиковых и металлических труб потери составляют 150 Па/м). Для нашего помещения необходимо использовать максимальное значение.

Если точную длину контура (L) определить сложно, этот параметр рассчитывают, исходя из габаритов отапливаемого помещения. Показатели длины, ширины и высоты дома складываются, а затем удваиваются. При общей площади 300 м² можно предположить, что длина дома составляет 30 м, ширина – 10 м, а высота 2,5 м. В этом случае L = (30 + 10 + 2,5) × 2, то есть 85 метров.

Самый простой вариант определения значения ZF выглядит следующим образом: при отсутствии термостатического вентиля в системе он равен 1,3, а при его наличии — 2,2.

Для расчета возьмем максимальную величину этого коэффициента и подставим все полученные значения в формулу:

150 × 85 × 2,2 ÷ 10000 = 2,8 м.

Предложенная методика расчета не является единственной. Для более точного определения напорных показателей насоса существуют формулы, в которых учитывается не коэффициент потерь, а реальные значения этих показателей.

Как подобрать циркуляционный насос для системы отопления - расчет .

Гидравлическое сопротивление

Этим термином выражаются суммарные потери давления в системе. Отопительный контур состоит из отдельных элементов, каждый из которых имеет свое значение этой характеристики.

К ним можно отнести:

  • вентили;
  • клапаны;
  • фильтры;
  • измерительные и регулирующие приборы;
  • радиаторы;
  • конвекторы и т. д.

Для точного определения потерь в системе обычно пользуются значениями, указанными в технической документации на каждый компонент отопительного контура.

Если же такой возможности нет, найти эту информацию можно в следующей таблице:

В этом случае для расчета высоты напора удобно воспользоваться несколько иной формулой.

H = 1,3 × (R1L1 + R2L2 + Z1 + Z2 + …. + Zn) ÷ 10000, где:

  • R1, R2 – потери в трубах подачи и «обратки» (Па/м);
  • L1, L2 – длина линий трубопровода подачи и «обратки» (м);
  • Z1, Z2 … Zn – потери давления на отдельных элементах системы (Па).

Число, находящееся в знаменателе формулы (10000), – коэффициент пересчета Паскалей в метры.

Циркуляционный насос в системе отопления | Ликбезы

Выбираем насос

После того, как все необходимые параметры для приобретения циркуляционного насоса определены, можно приступить к выбору конкретной модели. Технические характеристики устройств этого типа отражены в графиках соотношения производительности устройства и высоты напора, приложенных к их паспорту. Эти данные можно легко найти в Интернете.

В зависимости от количества скоростей в координатной системе выстроены один, два или три графика с указанием точки оптимального соотношения этих величин. Откладываем по оси Х значение производительности насоса, а по оси Y высоту его напора. Точка пересечения этих параметров должна находиться как можно ближе к точке, указанной на графике – полное их совмещение будет идеальным вариантом.

Самые распространенные модели имеют трехскоростной режим эксплуатации. Если вы остановитесь на одной из них, то выбор характеристик необходимо проводить по графику, соответствующему второй скорости, то есть среднему. В иных случаях совмещение параметров производится по любому из них.

Как подобрать циркуляционный насос. Быстро, просто, правильно.

Цены на разные модели насосов для системы отопления

насос отопление

Как рассчитать насос, если известна мощность котла

Часто возникают ситуации, когда котел приобретается заблаговременно или же насос добавляется в уже функционирующую систему отопления. В этом случае мощность отопительного агрегата известна, и все остальные элементы контура выбираются в зависимости от значения этого показателя.

Для расчета производительности циркуляционного насоса при заданной мощности источника нагрева, пользуются следующей формулой.

Q = N ÷ (t2 — t1), где:

  • Q – производительность насоса (м³/час);
  • N – мощность отопительного устройства (Вт);
  • t2 – температура теплоносителя на входе системы (⁰С);
  • t1 – температура жидкости на выходе из контура (⁰С).
Читать статью  Калькулятор расчета общего объёма системы отопления

Если возможность точно определить указанные параметры подачи и «обратки» отсутствует, воспользуйтесь средним значением температурного перепада — 15 ⁰С.

Рачет отопления частного дома

Количество скоростей у насосов

По своей конструкции насос циркуляционного типа представляет собой электродвигатель, механически связанный с валом крыльчатки, лопасти которой выталкивают из рабочей камеры нагретую жидкость в магистраль отопительного контура.

В зависимости от степени контакта с теплоносителем, насосы делятся на устройства с сухим и мокрым ротором. У первых в воду погружена только нижняя часть крыльчатки, вторые пропускают весь поток через себя.

Модели с сухим ротором отличаются более высоким коэффициентом полезного действия (КПД), но создают ряд неудобств из-за шума во время работы. Их аналоги с мокрым ротором более комфортны в эксплуатации, но обладают меньшей производительностью.

Современные циркуляционные насосы могут эксплуатироваться в двух или трех скоростных режимах, поддерживая различное давление в отопительной системе. Использование этой опции дает возможность на максимальной скорости быстро прогреть помещение, а затем выбрать оптимальный режим работы и сократить энергопотребление устройства до 50 %.

Переключение скоростей осуществляется с помощью специального рычага, установленного на корпусе насоса. Некоторые модели имеют автоматическую систему регулирования, изменяющую скорость вращения двигателя в соответствии с температурой воздуха в отапливаемом помещении.

Установка насоса в систему отопления: правильный подбор и монтаж прибора

Полезные рекомендации

При выборе насоса для системы отопления преимущество стоит отдавать конструкциям с «мокрым» ротором, поскольку они очень тихо работают и выдерживают более высокие нагрузки, чем гидравлические приспособления иных модификаций.

Корме того, обратите внимание на материал корпуса – остановите свой выбор на изделиях из нержавеющей стали, бронзы или латуни. Так же предпочтение стоит отдавать моделям с подшипниками и валом, изготовленными из керамики. Срок эксплуатации такого оборудования превышает 20 лет.

При установке устройства в систему необходимо проследить, чтобы вал крыльчатки располагался горизонтально, то есть параллельно трубе. Если в процессе работы насоса появляется подозрительный шум, это еще не говорит о его неисправности или фабричном дефекте. Попробуйте спустить воздух, оставшийся в системе после запуска.

Видео

С практическими рекомендациями по расчету насосного оборудования для отопительных контуров можно познакомиться, просмотрев это видео.

author

Евгений Афанасьев главный редактор

Автор публикации 26.10.2018

Понравилась статья?
Сохраните, чтобы не потерять!

Как сделать ручную и автоматическую подпитку системы отопления

Как самому сделать подпитку на домашнее отопление

Рабочий объем теплоносителя в отопительной сети может уменьшиться из-за ряда причин – утечки, испарения, сброса пара через автоматический клапан, выполнения ремонтных работ. В схеме открытого типа главный стояк опорожняется и заполняется воздухом из расширительного бака, закрытого — существенно снижается давление. В любом случае необходима подпитка системы отопления, которую можно сделать несколькими способами.

  • 1 Признаки критической нехватки теплоносителя
  • 2 Выбор варианта дозаправки
  • 3 Схема ручной подпитки
  • 4 Автоматический подпиточный узел
  • 5 Как подключить к системе отопления
  • 6 Напоследок о безопасном добавлении теплоносителя

Признаки критической нехватки теплоносителя

Далеко не все хозяева частных домов отслеживают техническое состояние водяного отопления, работает – и ладно. Когда образуется скрытая протечка, система продолжает функционировать некоторое время, пока количество теплоносителя не снизится до критического уровня. Этот момент отслеживается по следующим признакам:

  1. В открытой системе сначала опорожняется расширительная емкость, затем наполняется воздухом основной стояк, поднимающийся от котла. Результат: холодные батареи при перегреве подающего трубопровода, включение максимальной скорости циркуляционного насоса не помогает.
  2. Недостаток воды при самотечной разводке проявляется аналогичным образом, вдобавок слышно бульканье воды в стояке.
  3. На газовом отопителе (открытая схема) наблюдаются частые запуски / включения горелки — тактование, ТТ-котел перегревается и кипит.
  4. Нехватка теплоносителя в закрытой (напорной) схеме отражается на манометре – давление постепенно снижается. Настенные модели газовых котлов автоматически останавливаются при падении ниже порога 0.8 Бар.
  5. Напольные энергонезависимые агрегаты и твердотопливные котлы продолжают исправно греть остатки воды в закрытой системе, пока освобожденный теплоносителем объем не заполнится воздухом. Циркуляция остановится, возникнет перегрев, сработает предохранительный клапан.

Сброс теплоносителя через предохранительный вентиль

Важное уточнение. При кипении ТТ-котла, работающего в открытой гравитационной системе, взрыва не последует, поскольку теплоноситель сообщается с атмосферой. Нагреваемая отопителем вода испарится, затем в котельной начнется пожар. Хотя описанный процесс занимает немало времени, подобные ситуации – далеко не редкость.

Для чего нужна подпитка системы, мы пояснять не станем – это очевидная мера для сохранения работоспособности отопления. Остается выбрать способ пополнения теплосети.

Выбор варианта дозаправки

Для пополнения запаса теплоносителя используется несколько методов:

Насосные станции для опрессовки трубопроводов

  1. Ручная подпитка – самый дешевый и универсальный вариант, подходящий для всех типов разводок.
  2. Автоматическое пополнение из водопровода практикуется только в системах, работающих под давлением.
  3. Для заправки закрытой сети незамерзающим теплоносителем тоже применяется ручной опрессовочный насос. Устройство автоматизированной схемы с электрической насосной станцией, подключенной к емкости с антифризом, практикуется в промышленных котельных.

Примечание. Если радиаторная сеть и теплые полы заполнены антифризом, простая подпитка делается небольшим ручным насосом. Но чаще всего в системе отопления используется фильтрованная водопроводная вода, почему – из-за цены незамерзающих теплоносителей (особенно, безвредного пропиленгликоля).

Принцип действия автоматического подпиточного узла основан на срабатывании редукционного клапана, реагирующего на снижение давления в теплосети. Когда оно падает ниже установленного значения, клапанный механизм открывается и запускает воду из магистрали. Аналогичным образом действует насосная станция, закачивающая антифриз из отдельного бака.

Устройства автоматизированной подпитки

Возьмем на себя смелость рекомендовать использование ручной схемы подпитки. Причины:

  1. Узел состоит из 2—3 недорогих элементов и никогда не включится без ведома домовладельца.
  2. Как бы надежно и качественно ни была смонтирована тепловая сеть, вероятность протечки и срабатывания клапана существует.
  3. Ситуация: прорыв трубы, длительное вытекание теплоносителя в отсутствие хозяев. Полностью автономная «умная» подпитка зальет весь дом, испортит напольное покрытие и дорогостоящий ремонт.
  4. Представьте идентичную ситуацию в многоквартирном доме — утечка из индивидуальной системы и включение автоматизированного пополнения затопит соседей снизу.
  5. Под седлом клапана накопится мельчайший песок и элемент со временем потеряет герметичность. Под давлением со стороны водопровода 4—7 бар начнется самопроизвольная подпитка. Самый безобидный сценарий – сброс лишнего теплоносителя через предохранитель на группе безопасности котла.

Чем ликвидировать последствия описанных неприятностей, лучше выделить толику времени для личного контроля над своим отоплением. Обнаружив признаки потери теплоносителя, вы самостоятельно примете решение – подпитывать систему сразу, искать протечку либо производить ремонт. Негативный пример использования подобной автоматики смотрите на видео нашего эксперта:

Схема ручной подпитки

Простейший вариант наполнения системы реализован в 90% двухконтурных настенных котлов, куда априори подведена труба холодного водоснабжения. Внутри корпуса установлен ручной вентиль, соединяющий эту магистраль с обратной линией отопления. Нередко кран подпитки котла встречается на твердотопливных теплогенераторах с водяным контуром и без такового (пример — отопительные агрегаты чешского бренда Viadrus).

Справка. На некоторые модели газовых отопителей, оборудованные теплообменником ГВС (в частности, Beretta), производители вместо ручного крана ставят автоматический клапан подпитки с электромагнитным приводом. Если давление теплоносителя падает ниже 0.8 Бар, котел сам набирает воду до требуемого уровня.

Кран дозаправки газового котла

Для сборки классического подпиточного узла, подходящего к любому типу системы, понадобятся такие детали:

  • тройник с боковым отводом Ду 15—20, соответствующий материалу трубы отопительной магистрали, — фитинг для металлопластика, полипропилена и так далее;
  • тарельчатый (пружинный) обратный клапан;
  • кран шаровой;
  • соединительные муфты, фитинги.
Читать статью  Отопление многоэтажных домов

Задача обратного клапана — не пускать воду из тепловой сети назад, в водопровод. Если речь идет о подкачке антифриза с помощью насоса, без клапана вовсе не обойтись. Арматура устанавливается именно в порядке перечисления:

  1. Тройник врезается в обратку отопления после циркуляционного насоса.
  2. К отводному патрубку тройника подсоединяется обратный клапан.
  3. Следом ставится шаровой кран.

Схема пополнения системы через кран

Совет. Если на входе водопровода в частный дом отсутствует фильтр тонкой очистки, таковой желательно предусмотреть на линии подпитки. Элемент предохранит теплосеть от попадания мелкого песочка и частиц ржавчины, накапливающихся на тарелке обратного клапана и в седлах трехходовых вентилей.

Принцип действия узла простой: при открытии крана вода из централизованной магистрали поступает в трубопроводы отопления, поскольку ее давление выше (4—8 Бар против 0.8—2 Бар). Процесс наполнения закрытой системы отслеживается по манометру котла или группы безопасности. Если вы случайно превысили давление, воспользуйтесь краном Маевского на ближайшем радиаторе и стравите лишнюю воду.

Чтобы контролировать количество теплоносителя в расширительной емкости открытой теплосети, расположенной на чердаке дома, бак нужно оснастить 2 дополнительными трубками диаметром ½ дюйма:

Конструкция открытого расширительного бачка

  1. Контрольный трубопровод, заканчивающийся краном в котельной, врезается в боковую стенку примерно на половине высоты резервуара. Открыв данный вентиль, вы сможете определить наличие воды в баке, не забираясь на чердак.
  2. Трубка перелива врезается на 10 см ниже крышки бака, конец отводится в канализацию либо просто на улицу под свесом кровли. Находясь в топочной и открывая кран подпитки, вы должны видеть этот патрубок, когда оттуда потечет вода, заполнение прекращается.

Замечание. Если вас интересует расчет минимального объема расширительной емкости, перейдите по выделенной ссылке.

Схема с обратным клапаном и запорным краном также применима для заливки гелиосистем (солнечных коллекторов) и геотермальных контуров тепловых насосов антифризом. Как пользоваться котловым вентилем подпитки, рассказывается на видео:

Автоматический подпиточный узел

Если вы твердо уверены в надежности и качестве сборки системы, можете смонтировать автоматизированную схему, добавляющую воду из трубы ХВС. Что нужно купить:

  • редукционный клапан (проще – редуктор);
  • 3 шаровых крана;
  • 2 тройника;
  • труба для устройства байпаса.

Важный момент. Поступающая в редуктор вода должна предварительно очищаться грубым сетчатым фильтром, иначе клапан станет быстро засоряться. Если на вводе в здание такой фильтр не предусмотрен, установите его перед блоком подпитки.

Узел автоматического пополнения теплосети

Главный исполнительный элемент схемы – редуктор – состоит из следующих деталей:

  • фильтр тонкой очистки на входном патрубке;
  • пружинный седельный клапан с резиновыми уплотнителями;
  • рукоятка регулятора давления с нанесенной шкалой, диапазон – 0.5…4 Бар (или выше);
  • ручной запорный вентиль;
  • обратный клапан на выходе.

Устройство редукционного подпиточного клапана

Примечание. Существуют более дорогие модели подпиточных редукторов со встроенным манометром, измеряющим давление на стороне системы отопления. Поскольку данный прибор уже стоит в группе безопасности либо котле, тратить лишние деньги и дублировать его нет смысла. Исключение – ситуация, когда подпитка врезана далеко от источника тепла (читайте следующий раздел).

Как видите, редукционный автомат уже содержит все необходимые элементы – фильтр, обратный клапан и регулятор. Осталось собрать простую схему с байпасом и сервисными кранами, предназначенными для снятия и обслуживания редуктора.

Управлять вентилем просто – с помощью регулятора настройте минимальный порог давления в теплосети, откройте краны прямой магистрали, а байпас закройте. Как правильно отрегулировать автоматический клапан, показано в коротком видеосюжете:

Совет. Если планируете ставить перед редуктором грубый фильтр, предусмотрите дополнительный сервисный кран, дабы очищать сеточку, не отключая воду во всем доме.

Для организации автоматического добавления антифриза в систему можно приспособить «гидрофор» — водяную станцию с электронасосом, предназначенную для водоснабжения из колодца. Реле давления агрегата нужно перенастроить под минимальный напор 0.8 Бар, максимальный – 1.2…1.5 Бар, а всасывающий патрубок направить в бочку с незамерзающим теплоносителем.

Целесообразность такого подхода весьма сомнительна:

Резервуар с антифризом для пополнения системы

  1. Если «гидрофор» сработает и станет подкачивать антифриз, вам все равно придется искать и устранять причину проблемы.
  2. При длительном отсутствии хозяев подпитка тоже не спасет ситуацию в случае аварии, поскольку размер емкости ограничен. Насосная станция продлит работу отопления на какое-то время, но потом котел отключится.
  3. Ставить большую бочку опасно – можно затопить токсичным этиленгликолем полдома. Неядовитый пропиленгликоль слишком дорог, как и устранение последствий разлива.

Вывод. Вместо дополнительных насосов и автоматических редукторов лучше приобрести электронный блок типа «Кситал». После относительно недорогой инсталляции вы сможете контролировать работу отопления через сотовый телефон либо компьютер и быстро реагировать на возникновение аварийных ситуаций.

Как подключить к системе отопления

При закрытой схеме нет большой разницы, куда подсоединять трубопровод подпитки — к подаче или обратке. Мы рекомендуем пользоваться классической проверенной методикой — точка врезки должна располагаться на обратной линии рядом с котлом, после циркуляционного насоса и расширительного бачка. Причины:

Схема подключения модуля подпитки

  • узел располагается в помещении топочной, рядом с оборудованием и приборами;
  • подкачка воды в обратку сразу отражается на манометре, установленном на подаче за котлом;
  • врезка располагается в самой нижней точке, поток распределяется по 2 направлениям – в котел и радиаторы, воздух выдавливается равномерно.

Обвязка твердотопливных агрегатов предполагает устройство контура защиты от конденсата с трехходовым вентилем. Нельзя делать подпитку перед этим клапаном – от холодной воды он сразу закроется и котловой манометр начнет запаздывать с показаниями. Врезайтесь внутри контура, между 3-ходовым вентилем и теплогенератором.

Аналогичным образом подпитка врезается в обратную магистраль открытой системы. Второй вариант – добавление теплоносителя прямо в бак, недостаток метода – прокладка подающей трубы на чердак.

Подключение подпиточного узла к ТТ-котлу

Подключение подпиточной линии допускается и в других точках:

  • к отдельному штуцеру твердотопливного котла, предусмотренному заводом – изготовителем;
  • к нижней части гидрострелки;
  • к обратному коллектору распределительной гребенки;
  • к выходу бойлера косвенного нагрева.

Указанные варианты обычно реализуются в сложных и разветвленных системах загородных коттеджей. Подключение подпитки к бойлеру демонстрируется в очередном видео:

Напоследок о безопасном добавлении теплоносителя

Выполняя заливку воды либо частичную подпитку, соблюдайте наши рекомендации:

Обвязка газового котла с гидравлическим разделением

  1. Разогретую систему пополняйте медленно, открыв вентиль на четверть хода рычага. Таким способом удастся избежать образования воздушных пробок и предохранить теплообменник котла от температурного шока.
  2. Заправку с нуля делайте при неработающем теплогенераторе и отключенном циркуляционном насосе.
  3. Проверьте давление в расширительном баке и пройдитесь по всем радиаторам, открывая краны Маевского для выпуска воздуха.
  4. Если ваш котел оборудован современной электроникой, обязательно изучите пункты инструкции, касающиеся подпитки. Зачастую в агрегате необходимо активировать специальный сервисный режим.
  5. Лишнее давление легко стравливается через ближайший воздухоотводчик.

Справка. Чугунные теплообменники запросто дают трещины от резких перепадов температур, а стальные топки покрываются изнутри конденсатом. Последний смешивается с сажей и образует плотный налет.

Закачка антифриза ручным насосом не таит подводных камней. Опрессовочные установки оснащены собственным манометром, позволяющим контролировать актуальное давление в точке врезки.

Источник https://fb.ru/article/374771/podpitochnyiy-nasos-sistemyi-otopleniya-konstruktivnyie-osobennosti

Источник https://otoplenie-expert.com/elementy-otopleniya/raschet-nasosa.html

Источник https://otivent.com/podpitka-sistemy-otoplenija

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: